Aihua Wang,* Yan Zhang, Songfeng Lu, William V. Murray, and Gee-Hong Kuo

Drug Discovery, Johnson \& Johnson Pharmaceutical Research and Development, L.L.C. Welsh \& McKean Roads, P.O. Box 776, Spring House, Pennsylvania 19477-0776
*E-mail: awang1@its.jnj.com
Received January 27, 2010 DOI 10.1002/jhet. 488
Published online 30 August 2010 in Wiley Online Library (wileyonlinelibrary.com).

Abstract

An efficient and scalable synthesis of the potent CETP inhibitor, $(2 R, \alpha S)$-3,4-dihydro-2-[3-(1,1,2,2-tet-rafluoroethoxy)phenyl]-5-[3-(trifluoromethoxy)phenyl]- α-(trifluoromethyl)-1($2 H$)-quinolineethanol $\mathbf{1}$, is described. One of the important intermediates, tetrahydroquinoline 10, was readily prepared by reductive cyclization of nitroketone $\mathbf{9}$ in high yield. Asymmetric synthesis of $\mathbf{1 0}$ with high enantiomeric excess ($>80 \%$ ee) was also developed.

J. Heterocyclic Chem., 47, 1406 (2010).

INTRODUCTION

Low levels of high density lipoprotein-cholesterol (HDL-C) and high levels of low density lipoprotein-cholesterol (LDL-C) are independent risk factors for the development of atherosclerosis and eventually coronary heart disease (CHD), which remain the leading cause of death in the developed countries [1-3]. HDL-C plays important role in removal of excess cholesterol from peripheral cells to the liver for metabolic degradation in a reverse cholesterol transport (RCT) process [4-6]. Therefore, the increase in HDL-C level offers a new and promising therapeutical principle for treatment of CHD [7]. Plasma protein cholesteryl ester (CE) transfer protein (CETP) mediates the transfer of CE from HDL to very low density lipoprotein (VLDL) and LDL in exchange for triglyceride [8,9]. As a result, the disadvantage of this action is a reduction in HDL-C level and with increase in VLDL-C and LDL-C levels. Inhibition
of CETP has been proposed as a strategy to raise HDLC level [10], thus increases the efficiency of RCT.

Compound $\mathbf{1}$ has been identified as a potent CETP inhibitor [11]. It showed IC_{50} in 34-44 $\mathrm{n} M$ range and increased HDL-C in human CETP transgenic mice. The original preparation of $\mathbf{1}$ [11c] was lengthy and involved the use of some highly toxic and potentially explosive chemicals. To supply a large quantity of material $\mathbf{1}$ for further in vivo and toxicity studies, an efficient and scalable synthesis was required. In this article, we describe the chemical synthesis that was used successfully in the preparation of multigram quantities of compound $\mathbf{1}$.

As illustrated by the retrosynthetic analysis in Scheme 1 , the feature of our strategy involved efficient construction of the piperidine ring. We envisioned that transforming nitroketone $\mathbf{9}$ to tetrahydroquinoline $\mathbf{1 0}$ would be the key step in achieving our goal. This could be realized by reductive cyclization of nitroketone 9 to a racemic mixture of $\mathbf{1 0}$ from which the (R)-enantiomer

Scheme 1. Retrosynthetic analysis

could be isolated by chiral HPLC separation. (R)-10 might also be prepared in a stepwise fashion by asymmetric reductive cyclization of 9 . The nitroketone 9 could be derived from benzyl bromide 5 and β-keto ester 7 by alkylation and decarboxylation. The synthons 5 and 7 should be easily assembled from commercially available 5-bromo-6-methylnitrobenzene 2, 3-(trifluoro-methoxy)phenyl-boronic acid 3, and 3-tetrafluoroethoxybenzoic acid 6, respectively.

The preparation of benzyl bromide 5 and β-keto ester 7 is shown in Scheme 2, and the reaction scale is given in parentheses. Suzuki reaction [12] of 5-bromo-6-methylnitrobenzene 2 with 3-(trifluoromethoxy)phenylboronic acid 3 provided 28 g of $\mathbf{4}$ in 96% yield. In a solvent-free system, bromination [13] of $4(26 \mathrm{~g})$ with N-bromosuccimide and AIBN at $90^{\circ} \mathrm{C}$ for 5 h gave benzyl bromide 5 in 95% yield. The β-keto ester 7 was synthesized by acylation of ethyl hydrogen malonate with 3-tetrafluoroethoxybenzoyl chloride, followed by decarboxylation during acidic work-up procedure [14]. The product was a mixture of β-keto ester $\mathbf{7 a}$ and its tautomer enol $\mathbf{7 b}$ in $\sim 3: 1$ ratio.

With both building synthons 5 and 7 available, the stage was set to generate the important intermediate 8a by alkylation of β-keto ester 7 with benzyl bromide 5 (Scheme 3). However, the reaction was complicated by the formation of $\mathbf{8 a}, C, O$-dialkylation compound $\mathbf{8 b}$, and α, α-dialkylation by-product 8c. Different reaction conditions were explored by varying a variety of bases (such as $\mathrm{NaN}\left(\mathrm{SiMe}_{3}\right)_{2}, \mathrm{NaH}, n-\mathrm{BuLi}, \mathrm{Cs}_{2} \mathrm{CO}_{3}$, and $\left.\mathrm{K}_{2} \mathrm{CO}_{3}\right)$, solvents (such as THF, DMF, $\mathrm{CH}_{3} \mathrm{CN}$, and acetone), reaction temperature, the order of reagent addition. It was found that using $\mathrm{K}_{2} \mathrm{CO}_{3}$ in acetone was the best conditions tried to give the desired product $\mathbf{8 a}$ in 87%
yield, along with 5% of C, O-dialkylation by-product $\mathbf{8 b}$. Without separation of the two compounds, the mixture was converted to the same nitroketone 9 upon treatment with hydrochloric acid in hot acetic acid [15]. Under normal catalytic hydrogenation conditions, reductive cyclization of nitroketone 9 occurred to form tetrahydroquinoline $\mathbf{1 0}$ in essentially quantitative yield. The (R) - $\mathbf{1 0}$ was collected by chiral HPLC resolution of the racemic mixture. The R configuration at the 2 position of the tetrahydroquinoline ring of (R) - $\mathbf{1 0}$ was known by comparing its optical rotation, $[\alpha]_{D}{ }^{20}-13.3^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$, with that of $(R)-\mathbf{1 0},[\alpha]_{D}{ }^{20}-12.9^{\circ}\left(c \quad 1.0, \mathrm{CHCl}_{3}\right)$, obtained from an asymmetric synthesis shown below in Scheme 4. In the presence of catalytic amount of Lewis acid ytterbium trifluoromethanesulfonate, N -alkylation of (R) - $\mathbf{1 0}$ with commercially available $\sim 90 \%$ enriched (S)-1,1,1-trifluoro-2,3-epoxypropane 11 occurred to produce the target 1 in 80% yield [16]. Under these conditions, the ring opening of the epoxide proceeded with complete regioselectivity.

Although this route is attractive due to its simplicity and rapid access to $\mathbf{1}$, it suffers from the obvious need for resolution of racemic tetrahydroquinoline $\mathbf{1 0}$ and economy of synthesis. We then turned our attention toward the development of an asymmetric approach to $(R)-\mathbf{1 0}$. It was hoped that by controlling reaction conditions, the hydrogenation of nitroketone 9 could stop at aminoketone or cyclic-imine stage, and both of the materials could be reduced to $(R) \mathbf{- 1 0}$ in high enantiomeric purity by subjecting to chiral sodium triacyloxyborohydride [17] as demonstrated in our syntheses of similar analogues [18]. However, preliminary investigation by changing H_{2} pressure, solvents, and catalysts only yielded a mixture of starting material 9 and partially reduced intermediates. The strategy of stepwise reduction of nitroketone 9 to aminoketone and subsequently enantioselective reductive cyclization of which to $(R)-10$ was also attempted by using inorganic reducing reagents such as $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}, \mathrm{SnCl}_{2}$, and FeSO_{3}. Unfortunately, it only resulted in the formation of quinoline 12 (eq. 1):

Scheme 2

Scheme 3

Alternatively, the required stereocenter was introduced by utilizing Corey's oxazaborolidine-borane methodology [19]. Using the R-Me CBS oxazaborolidine reagent 15, nitroketone 9 was enantioselectively reduced to (S)-alcohol $\mathbf{1 3}$ in 91% yield and $>90 \%$ enantiomeric excess (\% ee) [20] (Scheme 4). The S configuration of alcohol 13 was

assigned based upon the precedent illustrated in Corey and Helal's article [19]. The hydroxyl group in $\mathbf{1 3}$ was then converted to a good leaving group mesylate $\mathbf{1 4}$. Upon treatment of $\mathbf{1 4}$ with SnCl_{2} in ethanol, the nitro group was reduced to amino functionality [21] and followed by spontaneous intramolecular displacement of the mesylate to yield the ring closed $(R)-\mathbf{1 0}$ in $80-85 \%$ ee [20]. During this transformation, the inversion of the original stereocenter occurred to give the R absolute configuration at the 2 position of the tetrahydroquinoline ring of $\mathbf{1 0}$. A small erosion of ee was observed during the cyclization step due to a competitive ionization pathway.

In conclusion, we have developed a very efficient, scalable, and high yielding synthesis of $(2 R, \alpha S)$-3,4-dihydro-2-[3-(1,1,2,2-tetrafluoroethoxy)phenyl]-5-[3-(trifluorome-thoxy)phenyl]- α-(trifluoromethyl)-1(2 H)-quinolineethanol 1. This method provides access to $\mathbf{1}$ in multigram quantities reliably.

EXPERIMENTAL

2-Methyl-3-nitro-3'-trifluoromethoxy-biphenyl (4). A mixture of 2-bromo-6-nitrotoluene $2(21.5 \mathrm{~g}, 99.5 \mathrm{mmol})$, 3-trifluoromethoxylbenzeneboronic acid $3(27.0 \mathrm{~g}, 131.1 \mathrm{mmol})$, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(3.50 \mathrm{~g}, 5.0 \mathrm{mmol})$, and $2.0 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}(120 \mathrm{~mL}$, 240 mmol) in dioxane (330 mL) was degassed with N_{2} and then heated at $100^{\circ} \mathrm{C}$ for 3 h . After cooling to room temperature, the reaction mixture was passed through Celite and partitioned between EtOAc and brine. The combined organic
phases were dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and purified by flash column chromatography ($1-10 \% \mathrm{EtOAc}$ in hexane) to give $28.27 \mathrm{~g}(96 \%)$ of 4 as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.38(\mathrm{~m}, 3 \mathrm{H})$, $7.31-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H})$.

2-Bromomethyl-3-nitro-3'-trifluoromethoxy-biphenyl (5). A mixture of $4(26.1 \mathrm{~g}, 87.8 \mathrm{mmol})$, NBS $(20.3 \mathrm{~g}, 114 \mathrm{mmol})$, and AIBN ($1.44 \mathrm{~g}, 8.77 \mathrm{mmol}$) was degassed with N_{2} and then heated at $85^{\circ} \mathrm{C}$. After 20 min , it began to react vigorously. After 2 h , the temperature was raised to $90^{\circ} \mathrm{C}$, and the mixture was heated for 3 more hours. After cooling to room temperature, the reaction mixture was diluted with hexane. The solid was filtered off, and the filtrate was concentrated to give $31.47 \mathrm{~g}(95 \%)$ of 5 as a yellow oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{dd}, J=2.0,2.0,1 \mathrm{H})$, 7.58-7.49 (m, 3 H), 7.41-7.28 (m, 3 H), 4.69 ($\mathrm{s}, 2 \mathrm{H}$).

3-Oxo-3-[3-(1,1,2,2-tetrafluoro-ethoxy)-phenyl]-propionic acid ethyl ester (7). To an ice-cooled solution of 3-tetrafluor-oethoxy-benzoic acid $6(40.0 \mathrm{~g}, 0.168 \mathrm{~mol})$ was added SOCl_{2} $(59.0 \mathrm{~mL}, 0.809 \mathrm{~mol})$ dropwise. After addition, the ice-bath was removed, and the mixture was stirred at room temperature for 3 h followed by heating at $50^{\circ} \mathrm{C}$ for 2 h and $75^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was left stirring at room temperature overnight. After removing of SOCl_{2} in vacuo, to the residue was added dry toluene and concentrated $(20 \mathrm{~mL} \times 3)$. After on high vacuum line for 5 h , the acyl chloride was obtained as a clear oil ($41.0 \mathrm{~g}, 95 \%$).

To a solution of $\mathrm{EtOCOCH}_{2} \mathrm{CO}_{2} \mathrm{H}(16.1 \mathrm{~g}, 0.122 \mathrm{~mol})$ in THF $(120 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added $i-\mathrm{PrMgCl}(2.0 M$ in THF, 122 mL , 0.244 mol) dropwise through an additional funnel. After stirring at $-78^{\circ} \mathrm{C}$ for 1 h , the above prepared acyl chloride ($20.9 \mathrm{~g}, 0.0815$ $\mathrm{mol})$ in THF (80 mL) was added via an addition funnel. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h and RT for 2 h . The reaction flask was cooled in an ice-bath, and $\sim 100 \mathrm{~mL}$ of $1 N \mathrm{HCl}$ was added dropwise until $\mathrm{pH}<1$. Upon addition of $1 N \mathrm{HCl}$, some precipitate formed and stirring became difficult. The precipitated solid gradually dissolved during further addition of $1 N \mathrm{HCl}$. The organic layer was separated and the aqueous layer was extracted with EtOAc. The combined organic phases were dried, concentrated, and purified by flash column chromatography (5-10\% EtOAc in hexane) to give $21.8 \mathrm{~g}(83 \%)$ of 7 as a yellow oil.

7a. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.80$ $(\mathrm{s}, 1 \mathrm{H}), 7.56-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.45(\mathrm{~m}, 1 \mathrm{H}), 5.95(\mathrm{tt}, J=$ $53.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 2 \mathrm{H})$, $1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; MS (ES) $m / z: 331\left(\mathrm{M}+\mathrm{Na}^{+}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~F}_{4} \mathrm{O}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right) \mathrm{m} / \mathrm{z} 309.0750$, found $\mathrm{m} /$ z 309.0751 .

7b. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.6(\mathrm{~s}, 1 \mathrm{H}), 7.71-7.68$ $(\mathrm{m}, 1 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 1$ H), $5.94(\mathrm{tt}, J=53.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 4.29(\mathrm{q}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.35(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ; \mathrm{MS}(\mathrm{ES}) m / z: 331$ $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

2-(3-Nitro-3'-trifluoromethoxy-biphenyl-2-ylmethyl)-3-oxo-3-[3-(1,1,2,2-tetrafluoro-ethoxy)-phenyl]-propionic acid ethyl ester (8a). To a mixture of β-keto ester $7(13.5 \mathrm{~g}, 43.8 \mathrm{mmol})$ and benzyl bromide $5(15.7 \mathrm{~g}, 41.7 \mathrm{mmol})$ in 270 mL of acetone was added $\mathrm{K}_{2} \mathrm{CO}_{3}(8.66 \mathrm{~g}, 62.6 \mathrm{mmol})$. After stirring at room temperature for 1 h , TLC $(15 \% \mathrm{EtOAc}$ in hexane) showed the completion of reaction. The reaction mixture was filtered through Celite and the solid was washed with EtOAc. The filtrate was concentrated and purified by flash column
chromatography ($5-15 \% \mathrm{EtOAc}$ in hexane) to give 22.5 g (87%) of $\mathbf{8 a}$ as a yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.85 (dd, $J=6.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.36$ $(\mathrm{m}, 5 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{tt}, J=53.0$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.82(\mathrm{~m}, 2 \mathrm{H})$, $3.74-3.59(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ; \mathrm{MS}(\mathrm{ES}) \mathrm{m} / \mathrm{z}$: $626\left(\mathrm{M}+\mathrm{Na}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{~F}_{7} \mathrm{NO}_{7}: \mathrm{C}, 53.74 ; \mathrm{H}$, 3.34; N, 2.32. Found: C, 54.00; H, 3.02; N, 2.36.

3-(3-Nitro-3'-trifluoromethoxy-biphenyl-2-yl)-1-[3-(1, 1,2,2-tetrafluoro-ethoxy)-phenyl]-propan-1-one (9). A solution of $\mathbf{8 a}$ $(22.5 \mathrm{~g}, 37.3 \mathrm{mmol})$ in concentrated $\mathrm{HCl}(85 \mathrm{~mL})$ and HOAc $(140 \mathrm{~mL})$ was heated at $100^{\circ} \mathrm{C}$ for 9 h . TLC $(20 \%$ EtOAc in hexane) showed the completion of reaction. After cooling down to room temperature, HOAc was evaporated through a rotary evaporator. The residue was diluted with water $(200 \mathrm{~mL})$ and cooled in an ice-bath. To the mixture was added $6 \mathrm{~N} \mathrm{NaOH}(\sim 80 \mathrm{~mL})$ until basic judged by pH paper. The aqueous solution was extracted with $\mathrm{EtOAc}(\times 3)$, and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and purified by flash column chromatography ($10-20 \% \mathrm{EtOAc}$ in hexane) to give 18.4 g (93\%) of 9 as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90-7.84(\mathrm{~m}, 1 \mathrm{H})$, $7.71-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.17$ (s, 1 H), $5.91(\mathrm{tt}, J=53.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.21-3.08(\mathrm{~m}, 4 \mathrm{H})$; MS (ES) $m / z: 554\left(\mathrm{M}+\mathrm{Na}^{+}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~F}_{7} \mathrm{NO}_{5}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right) m / z$ 532.0995, found m / z 532.0989. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~F}_{7} \mathrm{NO}_{5}$: C, $54.25 ; \mathrm{H}, 3.01$; N, 2.64. Found: C, 54.38; H, 2.59; N, 2.89 .

2-[3-(1,1,2,2-Tetrafluoro-ethoxy)-phenyl]-5-(3-trifluorome-thoxy-phenyl)-1,2,3,4-tetrahydro-quinoline (10). A mixture of $9(5.70 \mathrm{~g}, 10.7 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(615 \mathrm{mg})$ in EtOAc $(\sim 100 \mathrm{~mL})$ was shaken in a par-shaker under $50 \mathrm{psi}_{2}$ for 19 h. The reaction mixture was filtered through Celite and the solid was washed with EtOAc. The filtrate was concentrated and dried under vacuum to give $5.20 \mathrm{~g}(100 \%)$ of $\mathbf{1 0}$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.29(\mathrm{~m}, 3 \mathrm{H})$, $7.28-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.05(\mathrm{~m}, 4 \mathrm{H}), 6.61(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 5.92(\mathrm{tt}, J=53.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=8.9,3.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.75$ (ddd, $J=16.4,10.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.51$ (dt, J $=16.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.81(\mathrm{~m}, 1 \mathrm{H})$; MS (ES) m/z: $486\left(\mathrm{M}+\mathrm{H}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~F}_{7} \mathrm{NO}_{2}$: C, 59.39; H, 3.74; N, 2.89. Found: C, 59.80; H, 3.50; N, 2.80.
(2R)-1,2,3,4-Tetrahydro-2-[3-(1,1,2,2-tetrafluoroethoxy)-phenyl]-5-[3-(trifluoromethoxy)phenyl]quinoline (10). Chiral HPLC resolution of racemate $(\pm) \mathbf{- 1 0}: 16.5 \mathrm{~g}$ of $(\pm)-\mathbf{1 0}$ was separated by using Chiralcel OJ eluting with 80% heptane20% ethanol at $80 \mathrm{~mL} / \mathrm{min}$ and wavelength 220 nm . A total of 6.46 g of $(R)-\mathbf{1 0}$ and 5.91 g of $(S)-\mathbf{1 0}$ were obtained in 99.99% and 99.5% ee, respectively. $(R)-\mathbf{1 0}:[\alpha]_{D}{ }^{20}-13.3^{\circ} \quad(c 1.0$, CHCl_{3}.

Cyclization of (S)-14: A solution of $\mathbf{1 4}(105 \mathrm{mg}, 0.172 \mathrm{mmol})$ and $\mathrm{EtOH}(2 \mathrm{~mL})$ was degassed under vacuum and then filled with N_{2} for three times. To the solution $\mathrm{SnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(244 \mathrm{mg}$, 1.08 mmol) was added and the reaction mixture was stirred at room temperature under N_{2} for 4.5 h . After removal of EtOH under vacuum, to the residue were added $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and saturated $\mathrm{NH}_{4} \mathrm{OH}$. The precipitated solid was filtered through Celite, and rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and EtOAc . The filtrate was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried, concentrated in vaсиo, and purified by flash column chromatography ($10-15 \% \mathrm{EtOAc}$ in hexane) to give 46 $\mathrm{mg}(55 \%)$ of $(R)-\mathbf{1 0}$ as an oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
7.42-7.30 (m, 3 H), 7.29-7.23 (m, 2 H), 7.21-7.07 (m, 4 H), 6.61 $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.91(\mathrm{tt}, J=53.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{dd}, J$ $=9.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.20$ (brs, 1 H), 2.76 (ddd, $J=16.3,10.6,5.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.53(\mathrm{dt}, J=16.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-2.04(\mathrm{~m}, 1 \mathrm{H})$, 1.93-1.83 (m, 1 H$)$; MS (ES) $\mathrm{m} / \mathrm{z}: 486\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~F}_{7} \mathrm{NO}_{2} \mathrm{~m} / \mathrm{z} 485.1226$, found $\mathrm{m} / \mathrm{z} 485.1219$. $[\alpha]_{D}{ }^{20}$ $-12.9^{\circ}\left(\right.$ c $\left.1.0, \mathrm{CHCl}_{3}\right)$. A total of $80-85 \%$ ee was analyzed by chiral HPLC (Chiralcel OJ; isocratic elution 10/90 isopropanol/hexane, $0.8 \mathrm{~mL} / \mathrm{min}$, area integration at 210 nm).
(αS)-3-Nitro- α-[3-(1,1,2,2-tetrafluoroethoxy)phenyl]-3'-(tri-fluoromethoxy)-[1,1'-biphenyl]-2-propanol (13). To a solution of THF $(0.2 \mathrm{~mL})$ and $1.0 M(R)$-2-methyl-CBS-oxazaborolidine ($0.186 \mathrm{~mL}, 0.186 \mathrm{mmol}$) in toluene was added 2.0 M $\mathrm{BH}_{3} \mathrm{SMe}_{2}(0.137 \mathrm{~mL}, 0.274 \mathrm{mmol})$ in THF. After stirring at room temperature for 15 min , the mixture was cooled to $25^{\circ} \mathrm{C}$ and to which a solution of $9(132 \mathrm{mg}, 0.249 \mathrm{mmol})$ in THF (2 mL) was added. The reaction mixture was stirred from $-20^{\circ} \mathrm{C}$ to $-10^{\circ} \mathrm{C}$ for 3.5 h and then quenched with a few drops of MeOH followed by a few drops of 1 N HCl . The reaction mixture was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water. The organic layer was dried, concentrated, and purified by flash column chromatography ($10-20 \% \mathrm{EtOAc}$ in hexane) to provide $114 \mathrm{mg}(86 \%)$ of 13 as an oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.88-7.77 (m, 1 H), 7.43-7.37 (m, 3 H), 7.28-7.23 (m, 2 H$)$, 7.14-6.99 (m, 5 H), $5.90(\mathrm{tt}, J=53.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.54$ (brs, $1 \mathrm{H}), 2.89-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.63(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.76(\mathrm{~m}, 2$ H), 1.73 (brs, 1 H); MS (ES) m/z: $556\left(\mathrm{M}+\mathrm{Na}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~F}_{7} \mathrm{NO}_{5}$: $\mathrm{C}, 54.04 ; \mathrm{H}, 3.40 ; \mathrm{N}, 2.63$. Found: C, 54.10; H, 2.89; N, 2.50. $[\alpha]_{D}{ }^{20}-10.6^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$. A total of $>90 \%$ ee was determined by chiral HPLC (Chiralcel OJ; isocratic elution $10 / 90$ isopropanol/hexane, $0.8 \mathrm{~mL} / \mathrm{min}$, area integration at 210 nm).
(αS)-3-Nitro- α-[3-(1,1,2,2-tetrafluoroethoxy)phenyl]-3' -(tri-fluoromethoxy)-[1,1'-biphenyl]-2-propanol methanesulfonate (14). To a solution of $13(220 \mathrm{mg}, 0.413 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL) was added methanesulfonyl chloride ($0.040 \mathrm{~mL}, 0.52 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(0.086 \mathrm{~mL}, 0.62 \mathrm{mmol})$. After stirring at room temperature for 2 h , water was added and the mixture was acidified with $1 N \mathrm{HCl}$ until acidic by pH paper. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried and concentrated to give 250 mg (99\%) of $\mathbf{1 4}$ as a yellow oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88-$ $7.83(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H})$, 7.36-7.29 (m, 2 H), 7.20-7.15 (m, 2 H), 7.09-7.07 (m, 2 H), 7.03 $(\mathrm{s}, 1 \mathrm{H}), 5.92(\mathrm{tt}, J=53.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{dd}, J=7.3,5.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.85(\mathrm{td}, J=12.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}), 2.67$ (dd, $J=13.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-1.98$ (m, 2 H); MS (ES) m/z: 634 $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.
(2R, αS)-3,4-Dihydro-2-[3-(1,1,2,2-tetrafluoroethoxy)phenyl]-5-[3-(trifluoromethoxy)phenyl]- α-(trifluoromethyl)-1(2H)-quinolineethanol (1). To a mixture of $(R)-10(6.10 \mathrm{~g}, 10.2 \mathrm{mmol})$ and 1,1,1-trifluoro-2,3-epoxypropane $11(5.71 \mathrm{~g}, 51.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ under N_{2} was added $\mathrm{Yb}(\mathrm{OTf})_{3}(1.58 \mathrm{~g}, 2.55$ $\mathrm{mmol})$. The reaction mixture was heated at $50^{\circ} \mathrm{C}$ for 48 h and then cooled to ambient temperature. EtOAc was added and the mixture was washed with saturated $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$ and brine, dried, concentrated and purified by flash column chromatography ($5-15 \% \mathrm{EtOAc}$ in hexane) to give $6.00 \mathrm{~g}(80 \%)$ of $\mathbf{1}$ as an oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) d $7.40-7.34(\mathrm{~m}, 2 \mathrm{H})$, $7.25-7.12(\mathrm{~m}, 6 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.68(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{tt}, J=53.1,2.8 \mathrm{~Hz}, 1 \mathrm{H})$,
$4.90(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-4.41(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=$ $15.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J=15.4,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{dt}, J=$ $16.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.10(\mathrm{~m}, 1 \mathrm{H})$, 2.00-1.94 (m, 1 H); MS (ES) m/z: $598\left(\mathrm{M}+\mathrm{H}^{+}\right) ;$HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~F}_{10} \mathrm{NO}_{3} \mathrm{~m} / \mathrm{z}$ 597.1362, found $\mathrm{m} / \mathrm{z} 597.1378$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~F}_{10} \mathrm{NO}_{3}$: C, 54.28; H, 3.54; N, 2.34. Found: C, 54.10; H, 3.40; N, 1.99. $[\alpha]_{D}{ }^{20}-112.0^{\circ}$ (c1.0, CHCl_{3}).

Acknowledgment. The authors thank Sandra Damon for determining enantiomeric excess of some of the compounds.

REFERENCES AND NOTES

[1] Assmann, G.; Schulte, H.; von Eckardstein, A.; Huang, Y. Atherosclerosis 1996, 124, S11.
[2] Castelli, W. P.; Garrison, R. J.; Wilson, P. W.; Abbott, R. D.; Kalousdian, S.; Kannel, W. B. J Am Med Assoc 1986, 256, 2835.
[3] Kannel, W. B. Am J Cardiol 1995, 76, 69C.
[4] Bruce, C.; Chouinard, R. A., Jr.; Tall, A. R. Annu Rev Nutr 1998, 18, 297.
[5] Yamashita, S.; Sakai, N.; Hirano, K.-I.; Ishigami, M.; Maruyama, T.; Nakajima, N.; Matsuzawa, Y. Front Biosci 2001, 6, D366.
[6] Krause, B. R.; Auerbach, B. J. Curr Opin Invest Drugs 2001, 2, 375.
[7] Assmann, G.; Nofer, J. R. Annu Rev Med 2003, 54, 321.
[8] Tall, A. R. J Lipid Res 1993, 34, 1255.
[9] Lagrost, L. Biochem Biophys Acta 1994, 1215, 209.
[10] Sikorski, J. A.; Connolly, D. T. Curr Opin Drug Discov Dev 2001, 4, 602.
[11] (a) Kuo, G.-H.; Rano, T.; Pelton, P.; Demarest, K. T.; Gibbs, A. C.; Murray, W. V.; Damiano, B. P.; Connelly, M. A. J Med Chem 2009, 52, 1768; (b) Rano, T. A.; Sieber-McMaster, E.; Pelton, P. D.; Yang, M.; Demarest, K. T.; Kuo, G-H. Bioorg Med Chem Lett 2009, 19, 2456; (c) Rano, T. A.; Kuo, G-H. Org Lett 2009, 11, 2812; (d) Rano, T.; Kuo, G.-H.; Sieber-McMaster, E.; Demarest, K. T.; Pelton, P.; Wang, A. U.S. Pat Appl Publ US 2007265304 A1 20071115, 2007; (e) Sorgi, K. L.; Liu, F.; Chen, Y.; Chen, H.; Patel, M. N.; Li, X.; Wang, A.; Ballentine, S. A.; Beauchamp, D. A.; Macphee, J.-M.; Rammeloo, T. J. L.; Vanhoegaerden, T. J. PCT Int Appl WO 2008141077 A1 20081120, 2008.
[12] Miyaura, N.; Suzuki, A. Chem Rev 1995, 95, 2457.
[13] Togo, H.; Hirai, T. Synlett 2003, 5, 702.
[14] Renau, T. E.; Sanchez, J. P.; Domagala, J. M. J Heterocycl Chem 1996, 33, 1407.
[15] Balasankar, T.; Gopalakrishnan, M.; Nagarajan, S. Eur J Med Chem 2005, 40, 728.
[16] Reinhard, E. J.; Wang, J. L.; Durley, R. C.; Fobian, Y. M.; Grapperhaus, M. L.; Hickory, B. S.; Massa, M. A.; Norton, M. B.; Promo, M. A.; Tollefson, M. B.; Vernier, W. F.; Connolly, D. T.; Witherbee, B. J.; Melton, M. A.; Regina, K. J.; Smith, M. E.; Sikorski, J. A. J Med Chem 2003, 46, 2152.
[17] Atarashi, S.; Tsurumi, H.; Fujiwara, T.; Hayakawa, I. J Heterocycl Chem 1991, 28, 329.
[18] Wang, A.; Prouty, C. P.; Pelton, P. D.; Yong, M.; Demarest, K. T.; Murray, W. V.; Kuo, G.-H. Bioorg Med Chem Lett 2010, 20, 1432.
[19] Corey, E. J.; Helal, C. J. Angew Chem Int Ed 1998, 37, 1986.
[20] Enantiomeric excess was determined by chiral HPLC (Chiralcel OJ; isocratic elution $10 / 90$ isopropanol/hexane, $0.8 \mathrm{~mL} / \mathrm{min}$, area integration at 210 nm).
[21] Bellamy, F. D.; Ou, K. Tetrahedron Lett 1984, 25, 839.

